

光触媒技術による 「新型コロナウイルス」の感染力抑制効果

令和2年10月15日 TKP新橋カンファレンスセンター内会議室

あいだ ようこ 間陽子

実験担当者

間 陽子 日本大学医学部内科学系血液膠原病内科学分野 上席客員研究員

理化学研究所 科技ハブ産連本部 獣医学博士

東京大学 客員教授

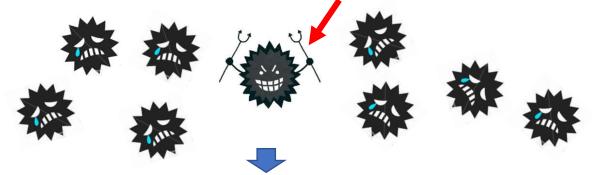
東京農工大学特任教授

松浦遼介 日本大学医学部内科学系血液膠原病内科学分野 研究員

理化学研究所 客員研究員 医科学博士

Lo chieh-wen 日本大学医学部内科学系血液膠原病内科学分野

東京大学大学院農学国際博士課程



解決すべき課題

COVID-19の脅威を完全に取り去ること

<u>本当に脅威なのは「感染性を持ったウイルス粒子」</u>

光触媒は生活環境の中で抗菌・抗ウイルス効果を示す

光触媒技術によって環境中の新型コロナウイルスを不活化

新型コロナウイルスと共生する「Withコロナ」の社会を実現するための、 安心できるクリーンな空間を構築することが実現

社会的脅威である新型コロナウイルスを克服の道を拓く

目的:

SARS-CoV-2に対する光触媒の有効性実証試験

- 1) <u>光触媒</u>による液体中のSARS-CoV-2の不活化
- 2) <u>光触媒</u>によるエアロゾル中のSARS-CoV-2の不活化
- 3) 光触媒によるSARS-CoV-2の不活化機序の解析

光触媒:酸化チタン

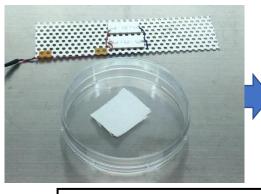
光触媒による液体中のSARS-CoV-2の不活化

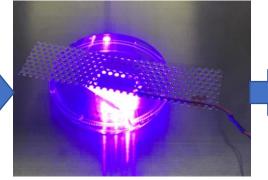
【試験条件】

ウイルス:SARS-CoV-2/JPN/TY/WK-521

ウイルス量: 1.0×10⁵ TCID₅₀

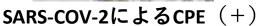
試験時間:0分、15分、30分、60分、90分、120分

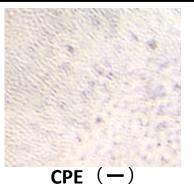


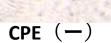


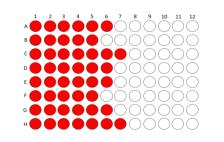


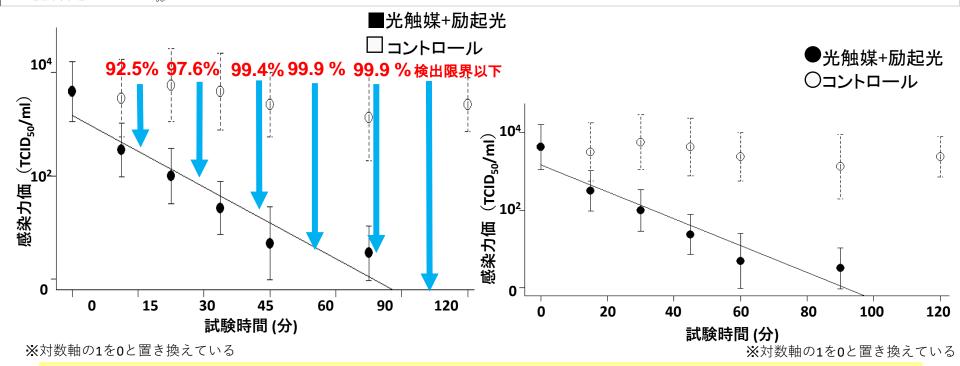
評価法:TCID₅₀法




各ウイルス液を10倍段階希釈

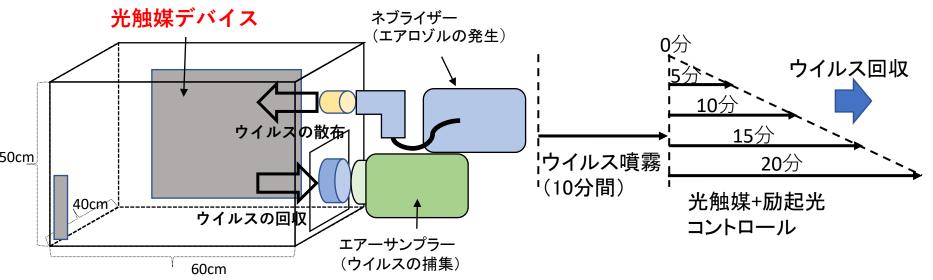


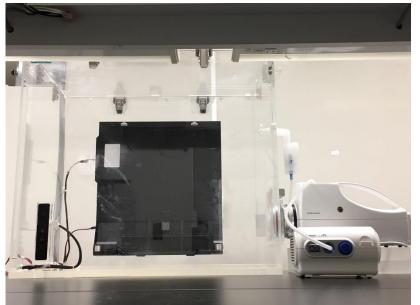

細胞変性効果(CPE)を顕微鏡で観察



光触媒による液体中のSARS-CoV-2の不活化

【試験結果-TCID₅₀法】


	光触媒+励起光							コントロール						
試験時間	0分	15分	30分	45分	60分	90分	120分	0分	15分	30分	45分	60分	90分	120分
感染力価(TCID50/ml) ^{※1}	4.2×10^3	3.2×10^2	1.0×10^2	2.4×10^1	4.9	3.2	<1.33	$4.2\!\times\!10^3$	3.2×10^3	5.6×10^3	$4.2\!\times\!10^3$	2.4×10^3	1.3×10^3	2.4×10^3
対数減少値	_	1.125	1.625	2.25	2.9375	3.125	>3.625	_	0.125	-0.125	0	0.25	0.5	0.25
減少率(%)	_	92.5	97.6	99.4	99.9	99.9	>99.9		3.4	-3.4	0.0	6.9	13.8	6.9


※1 検出下限値:1.33 TCID₅₀/mI

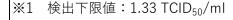
光触媒に励起光を120分照射することによって、 液体中のSARS-CoV-2の感染性は検出限界以下となった

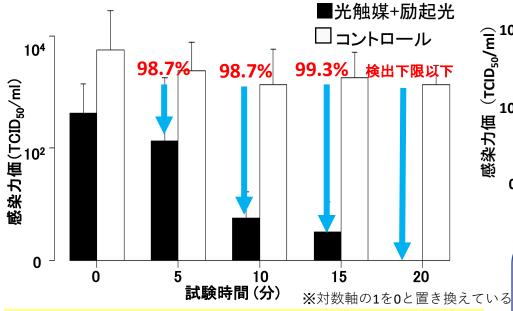
光触媒によるエアロゾル中の SARS-CoV-2の不活化

【試験条件】

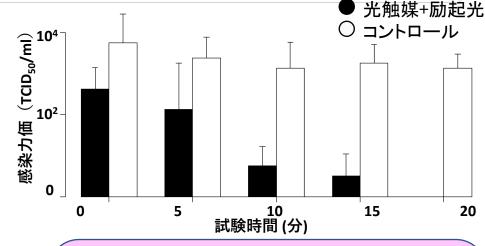
ウイルス: SARS-CoV-2/JPN/TY/WK-521

ウイルス量: 4.1 × 10⁶ TCID₅₀


試験時間:0分、5分、10分、15分、20分


評価法 :TCID₅₀法

光触媒によるエアロゾル中の SARS-CoV-2の不活化効果


【試験結果-TCID₅₀法】

		光触	媒+励	起光		コントロール					
試験時間	0分	5分	10分	15分	20分	0分	5分	10分	15分	20分	
感染力価(TCID50/ml) ^{※1}	4.2×10^2	1.3×10 ¹	5.6	3.2	<1.33	5.6×10^3	2.4×10^3	$1.3\!\times\!10^3$	$1.8\!\times\!10^3$	$1.3\!\times\!10^3$	
対数減少値	_	0.5	1.875	2.125	>2.625	_	0.375	0.625	0.5	0.625	
減少率(%)	_	68.4	98.7	99.3	>99.8	_	57.8	76.3	68.4	76.3	

光触媒に励起光を20分間照射することによって、エアロゾル中のSARS-CoV-2は検出限界以下となった

光触媒に励起光を照射することで エアロゾル中のSARS-CoV-2を 約6分で90% 約13分で99%

約20分で99.9%不活化が可能

世界で初めて、光触媒技術で、<u>空気中に浮遊する</u> 「新型コロナウイルス」の感染性を検出限界以下まで 消失させる効果を実証

- 1) 光触媒による液体中のSARS-CoV-2の不活化:
- 光触媒に励起光を120分照射することによって、液体中のSARS-CoV-2の感染性は検出限界以下となった。
- 2)光触媒によるエアロゾル中のSARS-CoV-2の不活化: 光触媒に励起光を20分間照射することによって、エアロゾル中のSARS-CoV-2は検出限界以下となった。
- 3) 光触媒によるSARS-CoV-2の不活化機序: 光触媒が発生する活性酸素がウイルス粒子表面のSタンパク質の分解 やウイルスRNAを損傷した可能性が一因であることが示唆された。
- 新型コロナウイルスと共生する「Withコロナ」の社会を実現するための 安心できるクリーンな空間を構築

